题目内容
【题目】如图,在梯形ABCD中,AB∥DC,过对角线AC的中点O作EF⊥AC,分别交边AB、CD于点E、F,连接CE、AF.
(1)求证:四边形AECF是菱形;
(2)若EF=4,tan∠OAE=,求四边形AECF的面积.
【答案】(1)证明详见解析;(2)20.
【解析】
试题分析:(1)运用“对角线互相垂直平分的四边形是菱形”判定,已知EF⊥AC,AO=OC,只需要证明OE=OF即可,用全等三角形得出;
(2)菱形的面积可以用对角线积的一半来表示,由已知条件,解直角三角形AOE可求AC、EF的长度.
试题解析:(1)证明:方法1:
∵AB∥DC,
∴∠1=∠2.
在△CFO和△AEO中,∠1=∠2,∠FOC=∠EOA,OC=OA,
∴△CFO≌△AEO,
∴OF=OE,
又∵OA=OC,
∴四边形AECF是平行四边形.
∵EF⊥AC,
∴四边形AECF是菱形.
方法2:证△AEO≌△CFO同方法1,
∴CF=AE,
∵CF∥AE,
∴四边形AFCE是平行四边形.
∵OA=OC,EF⊥AC,
∴EF是AC的垂直平分线,
∴AF=CF,
∴四边形AECF是菱形.
(2)解:∵四边形AECF是菱形,EF=4,
∴OE=EF=×4=2.
在Rt△AEO中,
∵tan∠OAE=,
∴OA=5,
∴AC=2AO=2×5=10.
∴=EFAC=×4×10=20.
练习册系列答案
相关题目