题目内容
【题目】如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.
(1)求抛物线的解析式a,b,c;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在求出点M坐标;如果不存在,说明理由.
【答案】(1)抛物线的解析式为y=﹣x2+x+4;
(2)线段PQ的最大值为;
(3)符合要求的点M的坐标为(,9)和(,﹣11).
【解析】试题分析:(1)如图1,易证BC=AC,从而得到点B的坐标,然后运用待定系数法求出二次函数的解析式;
(2)如图2,运用待定系数法求出直线AB的解析式.设点P的横坐标为t,从而可以用t的代数式表示出PQ的长,然后利用二次函数的最值性质就可解决问题;
(3)由于AB为直角边,分别以∠BAM=90°(如图3)和∠ABM=90°(如图4)进行讨论,通过三角形相似建立等量关系,就可以求出点M的坐标.
试题解析:(1)如图1,
∵A(﹣3,0),C(0,4),
∴OA=3,OC=4.
∵∠AOC=90°,
∴AC=5.
∵BC∥AO,AB平分∠CAO,
∴∠CBA=∠BAO=∠CAB.
∴BC=AC.
∴BC=5.
∵BC∥AO,BC=5,OC=4,
∴点B的坐标为(5,4).
∵A(﹣3.0)、C(0,4)、B(5,4)在抛物线y=ax2+bx+c上,
∴
解得:
∴抛物线的解析式为y=﹣x2+x+4;
(2)如图2,
设直线AB的解析式为y=mx+n,
∵A(﹣3.0)、B(5,4)在直线AB上,
∴
解得:
∴直线AB的解析式为y=x+.
设点P的横坐标为t(﹣3≤t≤5),则点Q的横坐标也为t.
∴yP=t+,yQ=﹣t2+t+4.
∴PQ=yQ﹣yP=﹣t2+t+4﹣(t+)
=﹣t2+t+4﹣t﹣
=﹣t2++
=﹣(t2﹣2t﹣15)
=﹣ [(t﹣1)2﹣16]
=﹣(t﹣1)2+.
∵﹣<0,﹣3≤1≤5,
∴当t=1时,PQ取到最大值,最大值为.
∴线段PQ的最大值为;
(3)①当∠BAM=90°时,如图3所示.
抛物线的对称轴为x=﹣=﹣=.
∴xH=xG=xM=.
∴yG=×+=.
∴GH=.
∵∠GHA=∠GAM=90°,
∴∠MAH=90°﹣∠GAH=∠AGM.
∵∠AHG=∠MHA=90°,∠MAH=∠AGM,
∴△AHG∽△MHA.
∴.
∴.
解得:MH=11.
∴点M的坐标为(,﹣11).
②当∠ABM=90°时,如图4所示.
∵∠BDG=90°,BD=5﹣=,DG=4﹣=,
∴BG=.
同理:AG=.
∵∠AGH=∠MGB,∠AHG=∠MBG=90°,
∴△AGH∽△MGB.
∴.
∴.
解得:MG=.
∴MH=MG+GH=+=9.
∴点M的坐标为(,9).
综上所述:符合要求的点M的坐标为(,9)和(,﹣11).