题目内容

【题目】如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.

(1)求证:四边形AMDN是平行四边形;

(2)填空:①当AM的值为 时,四边形AMDN是矩形;

②当AM的值为 时,四边形AMDN是菱形.

【答案】(1)证明见解析;(2)当AM的值为1时当AM的值为2时.

【解析】

试题分析:(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;

(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;

②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.

试题解析:(1)∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点,∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;

(2)①当AM的值为1时,四边形AMDN是矩形.理由如下:

∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;

故答案为:1;

②当AM的值为2时,四边形AMDN是菱形.理由如下:

∵AM=2,∴AM=AD=2,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形,故答案为:2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网