题目内容
【题目】如图,点O是等边内一点将绕点C按顺时针方向旋转得,连接已知.
求证:是等边三角形;
当时,试判断的形状,并说明理由;
探究:当为多少度时,是等腰三角形.
【答案】(1)证明见解析(2)△AOD是直角三角形;(3)当α的度数为125°,或110°,或140°时,△AOD是等腰三角形
【解析】
本题是条件性开放题,要找到变化中的不变量才能有效解决问题,尤其是注意分类讨论.(1)由旋转性质,可知CD=CO,再加旋转角是60°, 根据有一个角是60°的等腰三角形是等边三角形即可解答;(2) 根据旋转性质得△BOC≌△ADC,所以∠ADC=∠BOC=150°,同(1)可知△COD是等边三角形,每个角等于60°,从而求得∠ADO=90°,即可解答;(3)需要进行分类讨论,分AO=AD,OA=OD,OD=AD三种情况,再根据等边对等角,是等边三角形;∠BOC=∠ADC=,即可解答.
练习册系列答案
相关题目
【题目】某校共有1000名学生,为了了解他们的视力情况,随机抽查了部分学生的视力,并将调查的数据整理绘制成直方图和扇形图.
(1)这次共调查了多少名学生?扇形图中的、值分别是多少?
(2)补全频数分布直方图;
(3)在光线较暗的环境下学习的学生占对应被调查学生的比例如下表:
视力 | 0.35~0.65 | 0.65~0.95 | 0.95~1.25 | 1.25~l.55 | |
比例 |
根据调查结果估计该校有多少学生在光线较暗的环境下学习?