题目内容

已知x2+y2+z2-2x+4y-6z+14=0,则(x-y-z)2002=________.

0
分析:可以把14拆成1+4+9,然后运用完全平方公式,把左边写成非负数的平方和,再根据“几个非负数的和为0,则这几个非负数同时为0”进行计算.
解答:∵x2+y2+z2-2x+4y-6z+14=0,
∴x2-2x+1+y2+4y+4+z2-6z+9=0,
(x-1)2+(y+2)2+(z-3)2=0,
∴x-1=0,y+2=0,z-3=0,
解得x=1,y=-2,z=3,
∴(x-y-z)2002=0.
点评:此题要能够运用完全平方公式把等式的左边变形为几个非负数的和,再根据非负数的性质进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网