题目内容

【题目】如图,在矩形ABCD中,点E在AD上,EC平分∠BED.

(1)试判断△BEC是否为等腰三角形,请说明理由?
(2)若AB=1,∠ABE=45°,求BC的长;
(3)在原图中画△FCE,使它与△BEC关于CE的中点O成中心对称,此时四边形BCFE是什么特殊平行四边形,请说明理由.

【答案】
(1)

解:△BEC是否为等腰三角形,理由如下:

∵AD∥BC,

∴∠DEC=∠BCE,

∵∠DEC=∠BEC,

∴∠BEC=∠BCE,

∴△BCE是等腰三角形


(2)

解:

∵在Rt△ABE中,∠ABE=45°,

∴∠AEB=∠ABE=45°,

∴AB=AE=1.

∴BE=

∴BC=


(3)

解:四边形BCFE是菱形,理由如下:

如图,∵△FCE与△BEC关于CE的中点O成中心对称,

∴OB=OF,OE=OC,

∴四边形BCFE是平行四边形,

又∵BC=BE,

∴四边形BCFE是菱形.


【解析】(1)易证∠BEC=∠BCE,从而判定△BCE是等腰三角形.
(2)由(1)知BC=BE,而BC是等腰直角△ABE的斜边,AB=BE,运用勾股定理可求.
(3)根据中心对称的性质,可知四边形BCFE是平行四边形,又BC=BE,得出BCFE是菱形.
【考点精析】解答此题的关键在于理解中心对称及中心对称图形的相关知识,掌握如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称;如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网