题目内容
已知二次函数y=ax2(a>0)的图象上两点A、B的横坐标分别是-1、2,点O是坐标原点,如果△AOB是直角三角形,则△OAB的周长为分析:把A、B两点横坐标分别代入解析式,求出纵坐标,又因为△AOB是直角三角形,可以利用勾股定理列出关于a的方程,求出a的值,便可利用勾股定理求出各边长,进而得出△OAB的周长.
解答:解:如图所示:过点A作AD⊥x轴于D,过点B作BE⊥x轴于E,作AC⊥BE于C.
将x=-1、x=2分别代入解析式得,yA=a,yB=4a.
于是BC=4a-a=3a,AC=2-(-1)=3,
所以AB2=(3a)2+32=9a2+9,
又因为在Rt△ADO中,AO2=a2+1,
在Rt△BOE中,OB2=22+(4a)2
当∠AOB=90°时,根据勾股定理,AB2=AO2+BO2
即9a2+9=a2+1+22+(4a)2,解得a=
(负值不合题意舍去),
于是AO2=
+1=
,AO=
,
OB2=22+8=12,OB=2
,
AB2=AO2+BO2=
+12=
,AB=
,
△OAB的周长为AO+OB+AB=
+2
+
=2
+2
,
当∠OAB=90°时,AB2+AO2=BO2,即9a2+9+a2+1=22+(4a)2,解得a=1,
于是OA=
,OB=2
,AB=3
,
△OAB的周长为AO+OB+AB=4
+2
;
当∠OBA=90°时,AB2=AO2-BO2,即9a2+9=a2+1-[22+(4a)2],无解;
∴△OAB的周长为2
+2
或4
+2
.
将x=-1、x=2分别代入解析式得,yA=a,yB=4a.
于是BC=4a-a=3a,AC=2-(-1)=3,
所以AB2=(3a)2+32=9a2+9,
又因为在Rt△ADO中,AO2=a2+1,
在Rt△BOE中,OB2=22+(4a)2
当∠AOB=90°时,根据勾股定理,AB2=AO2+BO2
即9a2+9=a2+1+22+(4a)2,解得a=
| ||
2 |
于是AO2=
1 |
2 |
3 |
2 |
| ||
2 |
OB2=22+8=12,OB=2
3 |
AB2=AO2+BO2=
3 |
2 |
27 |
2 |
3
| ||
2 |
△OAB的周长为AO+OB+AB=
| ||
2 |
3 |
3
| ||
2 |
6 |
3 |
当∠OAB=90°时,AB2+AO2=BO2,即9a2+9+a2+1=22+(4a)2,解得a=1,
于是OA=
2 |
5 |
2 |
△OAB的周长为AO+OB+AB=4
2 |
5 |
当∠OBA=90°时,AB2=AO2-BO2,即9a2+9=a2+1-[22+(4a)2],无解;
∴△OAB的周长为2
6 |
3 |
2 |
5 |
点评:解答此题的关键是作出辅助线,利用勾股定理建立起关于参数a的关系式,再求出各边长,将它们相加即可求出周长.
练习册系列答案
相关题目
已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x | -0.1 | -0.2 | -0.3 | -0.4 |
y=ax2+bx+c | -0.58 | -0.12 | 0.38 | 0.92 |