题目内容

直线与x、y轴分别交于点A、C.抛物线的图象经过A、C和点B(1,0).

(1)求抛物线的解析式;

(2)在直线AC上方的抛物线上有一动点D,当D与直线AC的距离DE最大时,求出点D的坐标,并求出最大距离是多少?

 

【答案】

解:(1)在直线解析式中,令x=0,得y=﹣2;令y=0,得x=4,

∴A(4,0),C(0,﹣2)。

设抛物线的解析式为y=ax2+bx+c,

∵点A(4,0),B(1,0),C(0,﹣2)在抛物线上,

,解得

∴抛物线的解析式为:

(2)设点D坐标为(x,y),

在Rt△AOC中,OA=4,OC=2,由勾股定理得:AC=

如图,连接CD、AD,过点D作DF⊥y轴于点F,过点A作AG⊥FD交FD的延长线于点G,

则FD=x,DG=4﹣x,OF=AG=y,FC=y+2。

SACD=S梯形AGFC﹣SCDF﹣SADG

=(AG+FC)•FG﹣FC•FD﹣DG•AG

=(y+y+2)×4﹣(y+2)•x﹣(4﹣x)•y

=2y﹣x﹣4

代入得:SACD=2y﹣x﹣4=﹣x2+4x=﹣(x﹣2)2+4。

∴当x=2时,△ACD的面积最大,最大值为4。

当x=2时,y=1,∴D(2,1)。

∵SACD=AC•DE,AC=

∴当△ACD的面积最大时,高DE最大,

则DE的最大值为:

∴当D与直线AC的距离DE最大时,点D的坐标为(2,1),最大距离为

【解析】

试题分析:(1)首先求出点A,点C的坐标;然后利用待定系数法求出抛物线的解析式。

(2)AC为定值,当DE最大时,△ACD的面积最大,因此只需要求出△ACD面积的最大值即可。如图所示,作辅助线,利用SACD=S梯形AGFC﹣SCDF﹣SADG求出SACD的表达式,然后利用二次函数的性质求出最大值,并进而求出点D的坐标和DE的最大值。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网