题目内容
【题目】如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.
(1)求证:∠DAC=∠ACO+∠ABO;
(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求证:EF=EB;
(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.
【答案】(1)证明见解析;(2)证明见解析;(3)AD=7.
【解析】试题分析:(1)如图1中,连接OA,只要证明∠CAB=∠1+∠2=∠ACO+∠ABO,由点C是 中点,推出 ,推出∠BAC=∠DAC,即可推出∠DAC=∠ACO+∠ABO;
(2)想办法证明∠EFB=∠EBF即可;
(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.首先证明△EFB是等边三角形,再证明△ACK≌△ACT,Rt△DKC≌Rt△BTC,延长即可解决问题;
试题解析:(1)如图1中,连接OA,
∵OA=OC,∴∠1=∠ACO,
∵OA=OB,∴∠2=∠ABO,∴∠CAB=∠1+∠2=∠ACO+∠ABO,
∵点C是中点,∴,∴∠BAC=∠DAC,
∴∠DAC=∠ACO+∠ABO.
(2)如图2中,
∵∠BAD=∠BAC+∠DAC=2∠CAB,∠COB=2∠BAC,∴∠BAD=∠BOC,
∵∠DAB=∠OBA+∠EBA,∴∠BOC=∠OBA+∠EBA,
∴∠EFB=∠EBF,∴EF=EB.
(3)如图3中,过点O作OH⊥AB,垂足为H,延长BE交HO的延长线于G,作BN⊥CF于N,作CK⊥AD于K,连接OA.作CT∠⊥AB于T.
∵∠EBA+∠G=90°,∠CFB+∠HOF=90°,
∵∠EFB=∠EBF,∴∠G=∠HOF,
∵∠HOF=∠EOG,∴∠G=∠EOG,∴EG=EO,
∵OH⊥AB,∴AB=2HB,
∵OE+EB=AB,∴GE+EB=2HB,∴GB=2HB,
∴cos∠GBA= ,∴∠GBA=60°,
∴△EFB是等边三角形,设HF=a,
∵∠FOH=30°,∴OF=2FH=2a,
∵AB=13,∴EF=EB=FB=FH+BH=a+,
∴OE=EF﹣OF=FB﹣OF=﹣a,OB=OC=OE+EC=﹣a+2=﹣a,
∵NE=EF=a+,
∴ON=OE=EN=(﹣a)﹣(a+)=﹣a,
∵BO2﹣ON2=EB2﹣EN2,
∴(﹣a)2﹣(﹣a)2=(a+)2﹣(a+)2,
解得a=或﹣10(舍弃),
∴OE=5,EB=8,OB=7,
∵∠K=∠ATC=90°,∠KAC=∠TAC,AC=AC,∴△ACK≌△ACT,∴CK=CT,AK=AT,
∵,∴DC=BC,∴Rt△DKC≌Rt△BTC,∴DK=BT,
∵FT=FC=5,∴DK=TB=FB﹣FT=3,∴AK=AT=AB﹣TB=10,∴AD=AK﹣DK=10﹣3=7.
【题目】为了强化司机的交通安全意识,我市利用交通安全宣传月对司机进行了交通安全知识问卷调查.关于酒驾设计了如下调查问卷:
克服酒驾﹣﹣你认为哪种方式最好?(单选) |
A加大宣传力度,增强司机的守法意识. B在汽车上张贴温馨提示:“请勿酒驾”. C司机上岗前签“拒接酒驾”保证书. D加大检查力度,严厉打击酒驾. E查出酒驾追究一同就餐人的连带责任. |
随机抽取部分问卷,整理并制作了如下统计图:
根据上述信息,解答下列问题:
(1)本次调查的样本容量是多少?
(2)补全条形图,并计算B选项所对应扇形圆心角的度数;
(3)若我市有3000名司机参与本次活动,则支持D选项的司机大约有多少人?