ÌâÄ¿ÄÚÈÝ
Èçͼ£¬¼ÇÅ×ÎïÏßy=-x2+1µÄͼÏóÓëxÕý°ëÖáµÄ½»µãΪA£¬½«Ïß¶ÎOA·Ö³ÉnµÈ·Ý£¬Éè·Öµã·Ö±ðΪP1£¬P2£¬¡Pn-1£¬¹ýÿ¸ö·Öµã×÷xÖáµÄ´¹Ïߣ¬·Ö±ðÓëÅ×ÎïÏß½»ÓÚµãQ1£¬Q2£¬¡£¬Qn-1£¬ÔÙ¼ÇÖ±½ÇÈý½ÇÐÎOP1Q1£¬P1P2Q2£¬¡£¬Pn-2Pn-1Qn-1µÄÃæ»ý·Ö±ðΪS1£¬S2£¬¡£¬ÕâÑù¾ÍÓÐS1=
£¬S2=
£¬¡£»¼ÇW=S1+S2+¡+Sn-1£¬µ±nÔ½À´Ô½´óʱ£¬Äã²ÂÏëW×î½Ó½üµÄ³£ÊýÊÇ£¨¡¡¡¡£©

| n2-1 |
| 2n3 |
| n2-4 |
| 2n3 |
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|
·ÖÎö£ºÒÑÖªµãPn¶¼ÔÚxÖáÉÏÇÒ½«Ïß¶ÎOA·Ö³ÉnµÈ·Ý£¬ÔòÿµÈ·ÖΪ
£¬µãQn¶¼ÔÚÅ×ÎïÏßy=-x2+1ÉÏ£¬Èý½ÇÐÎÃæ»ýµÈÓڵ׳ËÒԸߵĻýµÄ
£¬ÀûÓô¹Ö±Ìõ¼þÇó³ö¸ß£¬¾Í¿ÉÒÔ°ÑOP1Q1£¬P1P2Q2£¬¡µÄÃæ»ý±íʾ³öÀ´£¬ÕÒ³ö¹æÂÉ£¬Ð´³öSmµÄ±í´ïʽÔÙÇóºÍ£¬×îºóµ±nºÜ´óʱ£¬Çó³öW×î½Ó½üµÄ³£Êý£®
| 1 |
| n |
| 1 |
| 2 |
½â´ð£º½â£ºÓÉͼÏóÖªS3=
£¬×ܽá³ö¹æÂÉ£ºSm=
(1¡Üm¡Ün-1)£¬
Ôòw=S1+S2+¡+Sn-1=
+
+¡+
=
=
=
=
-
-
+
-
=
-
-
£¬
µ±nÔ½À´Ô½´óʱ£¬¿ÉÖªW×î½Ó½üµÄ³£ÊýΪ
£®
¹ÊÑ¡C£®
| n2-9 |
| 2n3 |
| n2-m2 |
| 2n3 |
Ôòw=S1+S2+¡+Sn-1=
| n2-1 |
| 2n3 |
| n2-4 |
| 2n3 |
| n2-(n-1)2 |
| 2n3 |
| (n-1)n2-[1+22+¡+(n-1)2] |
| 2n3 |
=
n3-n2-
| ||
| 2n3 |
=
| 4n3+3n2-7n |
| 12n3 |
=
| 1 |
| 2 |
| 1 |
| 2n |
| 1 |
| 6 |
| 1 |
| 4n |
| 1 |
| 12n2 |
=
| 1 |
| 3 |
| 1 |
| 4n |
| 1 |
| 12n2 |
µ±nÔ½À´Ô½´óʱ£¬¿ÉÖªW×î½Ó½üµÄ³£ÊýΪ
| 1 |
| 3 |
¹ÊÑ¡C£®
µãÆÀ£º´ËÌ⿼²éÅ×ÎïÏßÐÔÖʺÍÃæ»ý¹«Ê½£¬ÊǵÀ¹æÂÉÌ⣬Ҫ½áºÏͼÏóºÍ¼¸ºÎ¹ØÏµ£¬Çó³öͳһ±í´ïʽSm£¬Ñ§»á¹Û²ìͼÐÎÇóÃæ»ý£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿