题目内容
【题目】如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继 续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.己知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)
【答案】轮船不改变航向继续向前行使,轮船无触礁的危险.
【解析】
试题分析:如图,直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD-CD即可列方程,从而求得AD的长,与170海里比较,确定轮船继续向前行驶,有无触礁危险.
试题解析:该轮船不改变航向继续前行,没有触礁危险
理由如下:如图所示.
则有∠ABD=30°,∠ACD=60°.
∴∠CAB=∠ABD,
∴BC=AC=200海里.
在Rt△ACD中,设CD=x海里,
则AC=2x,AD=x,
在Rt△ABD中,AB=2AD=2x,
BD===3x,
又∵BD=BC+CD,
∴3x=200+x,
∴x=100.
∴AD=x=100≈173.2,
∵173.2海里>170海里,
∴轮船不改变航向继续向前行使,轮船无触礁的危险.
练习册系列答案
相关题目