题目内容
在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B
小题1:求△ADF∽△DEC.
小题2:AB=4,AD=3根号3,AE=3,求AF的长
小题1:求△ADF∽△DEC.
小题2:AB=4,AD=3根号3,AE=3,求AF的长
小题1:证明:∵四边形ABCD是平行四边形
∴AD∥BC AB∥CD
∴∠ADF=∠CED ∠B+∠C=180°
∵∠AFE+∠AFD=180 ∠AFE=∠B
∴∠AFD=∠C
∴△ADF∽△DEC
小题2:解:∵四边形ABCD是平行四边形
∴AD∥BC CD=AB=4
又∵AE⊥BC ∴ AE⊥AD
在Rt△ADE中,DE=
∵△ADF∽△DEC
∴ ∴ AF=
(1)△ADF和△DEC中,易知∠ADF=∠CED(平行线的内错角),而∠AFD和∠C是等角的补角,由此可判定两个三角形相似;
(2)在Rt△ABE中,由勾股定理易求得BE的长,即可求出EC的值;从而根据相似三角形得出的成比例线段求出AF的长.
(2)在Rt△ABE中,由勾股定理易求得BE的长,即可求出EC的值;从而根据相似三角形得出的成比例线段求出AF的长.
练习册系列答案
相关题目