题目内容
【题目】根据《太原市电动自行车管理条例》的规定,2019年5月1日起,未上牌的电动自行车将禁止上路行驶,而电动自行车上牌登记必须满足国家标准.某商店购进了甲.乙两种符合国家标准的新款电动自行车.其中甲种车总进价为22500元,乙种车总进价为45000元,已知乙种车每辆的进价是甲种车进价的1.5倍,且购进的甲种车比乙种车少5辆.
(1)甲种电动自行车每辆的进价是多少元?
(2)这批电动自行车上市后很快销售一空.该商店计划按原进价再次购进这两种电动自行车共50辆,将新购进的电动自行车按照表格中的售价销售.设新购进甲种车m辆(20≤m≤30),两种车全部售出的总利润为y元(不计其他成本).
①求y与m之间的函数关系式;
②商店怎样安排进货方案,才能使销售完这批电动自行车获得的利润最大?最大利润是多少?
型号 | 甲 | 乙 |
售价(元/辆) | 2000 | 2800 |
【答案】(1)甲电动车的进价为每辆1500元;(2)①y=﹣50m+27500;②当x=20时,利润最大,最大利润为26500元.
【解析】
(1)根据甲、乙两种电动车的进价、数量之间的关系,列分式方程进行解答即可,
(2)建立利润y元与甲电动车的数量m之间的函数关系式,再依据函数的增减性和自变量的取值范围,确定何时利润最大.
解:(1)设甲种电动自行车每辆的进价是x元,则乙种电动车的进价为1.5x元,由题意得:
,
解得:x=1500,
经检验,x=1500是原方程的解,
答:甲电动车的进价为每辆1500元.
(2)①设新购进甲种车m辆,则乙电动车为(50﹣m)辆,
y=(2000﹣1500)m+(2800﹣1500×1.5)(50﹣m)=﹣50m+27500
②∵y=﹣50m+27500,y随x的增大而减小,20≤m≤30,
∴当x=20时,y最大=﹣50×20+27500=26500元,
答:y与x的函数关系式为y=﹣50x+27500,当x=20时,利润最大,最大利润为26500元.
【题目】小明根据学习函数的经验,对函数y=x+的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数y=x+的自变量x的取值范围是_____.
(2)下表列出了y与x的几组对应值,请写出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当y=﹣时,x=_____.
②写出该函数的一条性质_____.
③若方程x+=t有两个不相等的实数根,则t的取值范围是_____.