题目内容

已知:如图,在菱形ABCD中,∠B= 60°,把一个含60°角的三角尺与这个菱形叠合,使三角尺60°角的顶点与点A重合,将三角尺绕点A按逆时针方向旋转 .
(1)如图1,当三角尺的两边分别与菱形的两边BC、CD相交于点E、F.求证:CE+CF=AB;
(2)如图2,当三角尺的两边分别与菱形的两边BC、CD的延长线相交于点E、F.写出此时CE、CF、AB长度之间关系的结论.(不需要证明)
(1)证明见解析;(2)CF-CE=AB.

试题分析:(1)通过证明△ABE≌△ACF得出CF=BE,从而可证结论CE+CF=AB.
(2)可以通过证明△ACE≌△ADF,得出结论,由AB=AC、∠B=∠ACF,再利用等式的性质可得出∠BAE=∠CAF,从而利用AAS可证CE=DF,从而CF-CE=AB.
试题解析:在△ABE和△ACF中,
∵∠BAE+∠EAC=∠CAF+∠EAC=60°,
∴∠BAE=∠CAF.
∵AB=AC,∠B=∠ACF=60°,
∴△ABE≌△ACF(ASA).
∴BE=CF;
∴CF+CE=BE+CE=BC=AB;
(2) CF-CE=AB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网