题目内容
【题目】如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D.下列四个命题:①当x>0时,y>0; ②若a=﹣1,则b=3;③抛物线上有两点P(x1 , y1)和Q(x2 , y2),若x1<1<x2 , 且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6 .其中正确的命题有( )个.
A.1
B.2
C.3
D.4
【答案】B
【解析】解:①当x>0时,函数图象过一四象限,当0<x<b时,y>0;当x>b时,y<0,故本选项错误;②二次函数对称轴为x=﹣ =1,当a=﹣1时有 =1,解得b=3,故本选项正确;③∵x1+x2>2,
∴ >1,
又∵x1﹣1<1<x2﹣1,
∴Q点距离对称轴较远,
∴y1>y2,故本选项正确;④如图,作D关于y轴的对称点D′,E关于x轴的对称点E′,
连接D′E′,D′E′与DE的和即为四边形EDFG周长的最小值.
当m=2时,二次函数为y=﹣x2+2x+3,顶点纵坐标为y=﹣1+2+3=4,D为(1,4),则D′为(﹣1,4);C点坐标为C(0,3);则E为(2,3),E′为(2,﹣3);
则DE= = ;D′E′= = ;
∴四边形EDFG周长的最小值为 + ,故本选项错误.
正确的有2个.
所以答案是:B.
【考点精析】根据题目的已知条件,利用抛物线与坐标轴的交点的相关知识可以得到问题的答案,需要掌握一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.