题目内容
【题目】四位同学在研究函数y=ax2+bx+c(a、b、c为常数,且a≠0)时,甲发现当x=1时,函数有最大值;乙发现﹣1是方程ax2+bx+c=0的一个根;丙发现函数的最大值为﹣1;丁发现当x=2时,y=﹣2,已知四位中只有一位发现的结论时错误的,则该同学是( ).
A. 甲B. 乙C. 丙D. 丁
【答案】B
【解析】
将甲乙丙丁四人的结论转化为等式和不等式,然后用假设法逐一排除正确的结论,最后得出错误的结论.
解:四人的结论如下:
甲:b+2a=0,且a<0,b>0;
乙:a﹣b+c=0;
丙:a<0,且,即:4ac﹣b2=﹣4a;
丁:4a+2b+c=﹣2.
由于甲、乙、丁正确,联立,解得:c=﹣2,a=>0,与甲矛盾,故其中必有一个错误,所以丙是正确的;
若甲乙正确,则:c=﹣3a,b=﹣2a,代入丙:﹣12a2﹣4a2=﹣4a,得:a=>0,与甲矛盾,故甲乙中有一个错,所以丁正确;
若乙正确,则b=a+c,代入丙:4ac﹣(a+c) 2=﹣4a,化简,得:﹣(a﹣c)2=﹣4a,故a≥0,与丙中a<0矛盾,故乙错误.
因此乙错误.
故选:B.
【题目】小王是“新星厂”的一名工人,请你阅读下列信息:
信息一:工人工作时间:每天上午8:00—12:00,下午14:00—18:00,每月工作25天;
信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:
生产甲种产品数(件) | 生产乙种产品数(件) | 所用时间(分钟) |
10 | 10 | 350 |
30 | 20 | 850 |
信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元;
信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元.请根据以上信息,解答下列问题:
(1)小王每生产一件甲种产品和一件乙种产品分别需要多少分钟;
(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?