题目内容
(9分)光明中学十分重视中学生的用眼卫生,并定期进行视力检测.某次检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力.
(1)求甲、乙、丙三名学生在同一处检测视力的概率;
(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.
(1)求甲、乙、丙三名学生在同一处检测视力的概率;
(2)求甲、乙、丙三名学生中至少有两人在B处检测视力的概率.
解:(1)列出甲、乙、丙三名学生各自随机选择其中的一处检测视力的所有情况:
三人都不选A处,则三人都选B处,计1种情况。
三人中一人选A处,另二人选B处,计3种情况;甲选A处,乙、丙选B处;乙选A处,甲、丙选B处;丙选A处,甲、乙选B处。
三人中二人选A处,另一人选B处,计3种情况;甲、乙选A处,丙选B处;甲、丙选A处,乙选B处;乙、丙选A处,甲选B处。
三人都选A处,则三人都不选B处,计1种情况。
所有可能情况计8种情况,甲、乙、丙三名学生在同一处检测视力的情况计2种情况:都选A处或都选B处。因此甲、乙、丙三名学生在同一处检测视力的概率为
。
(2)甲、乙、丙三名学生中至少有两人在B处检测视力的情况计4种情况:三人中有二人选B处和三人都选B处。因此甲、乙、丙三名学生中至少有两人在B处检测视力的概率为。
三人都不选A处,则三人都选B处,计1种情况。
三人中一人选A处,另二人选B处,计3种情况;甲选A处,乙、丙选B处;乙选A处,甲、丙选B处;丙选A处,甲、乙选B处。
三人中二人选A处,另一人选B处,计3种情况;甲、乙选A处,丙选B处;甲、丙选A处,乙选B处;乙、丙选A处,甲选B处。
三人都选A处,则三人都不选B处,计1种情况。
所有可能情况计8种情况,甲、乙、丙三名学生在同一处检测视力的情况计2种情况:都选A处或都选B处。因此甲、乙、丙三名学生在同一处检测视力的概率为
。
(2)甲、乙、丙三名学生中至少有两人在B处检测视力的情况计4种情况:三人中有二人选B处和三人都选B处。因此甲、乙、丙三名学生中至少有两人在B处检测视力的概率为。
(1)根据检测设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处检测视力可以利用列表法列举出所有可能即可求出;
(2)根据图表求出即可.
解:∵甲、乙、丙的检测情况,有如下8种可能:
∴
(1)P(甲、乙、丙在同一处检测)=;
(2)P(至少有两人在B处检测)=.
(2)根据图表求出即可.
解:∵甲、乙、丙的检测情况,有如下8种可能:
| A | B |
1 | 甲 | 乙丙 |
2 | 甲乙 | 丙 |
3 | 甲丙 | 乙 |
4 | 甲乙丙 | |
5 | 乙 | 甲丙 |
6 | 乙丙 | 甲 |
7 | 丙 | 甲乙 |
8 | | 甲乙丙 |
(1)P(甲、乙、丙在同一处检测)=;
(2)P(至少有两人在B处检测)=.
练习册系列答案
相关题目