题目内容
【题目】慈氏塔位于岳阳市城西洞庭湖边,是湖南省保存最好的古塔建筑之一.如图,小亮的目高CD为1.7米,他站在D处测得塔顶的仰角∠ACG为45°,小琴的目高EF为1.5米,她站在距离塔底中心B点a米远的F处,测得塔顶的仰角∠AEH为62.3°.(点D、B、F在同一水平线上,参考数据:sin62.3°≈0.89,cos62.3°≈0.46,tan62.3°≈1.9)
(1)求小亮与塔底中心的距离BD;(用含a的式子表示)
(2)若小亮与小琴相距52米,求慈氏塔的高度AB.
【答案】(1)小亮与塔底中心的距离BD(1.9a﹣0.2)米;(2)慈氏塔的高度AB为36.1米.
【解析】
(1)由题意得,四边形CDBG、HBFE为矩形,求得GH=0.2,在Rt△AHE中,利用∠AEH的正切求得AH≈1.9a,从而得AG=1.9a﹣0.2,在Rt△ACG中,根据等腰直角三角形的性质求得CG=AG=1.9a﹣0.2,由此即可求得答案;
(2)由题意可得关于a的方程,解方程求得a的值即可得答案.
(1)由题意得,四边形CDBG、HBFE为矩形,
∴GB=CD=1.7,HB=EF=1.5,
∴GH=0.2,
在Rt△AHE中,tan∠AEH=,
则AH=HEtan∠AEH≈1.9a,
∴AG=AH﹣GH=1.9a﹣0.2,
在Rt△ACG中,∠ACG=45°,
∴CG=AG=1.9a﹣0.2,
∴BD=1.9a﹣0.2,
答:小亮与塔底中心的距离BD(1.9a﹣0.2)米;
(2)由题意得,1.9a﹣0.2+a=52,
解得,a=18,
则AG=1.9a﹣0.2=34.4,
∴AB=AG+GB=36.1,
答:慈氏塔的高度AB为36.1米.
【题目】某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改资金(万元) | 2.5 | 3 | 4 | 4.5 |
产品成本(万元/件) | 7.2 | 6 | 4.5 | 4 |
(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;
(2)按照这种变化规律,若2017年已投入资金5万元.
①预计生产成本每件比2016年降低多少万元?
②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).