题目内容
【题目】如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.
(1)求证:AD∥BC;
(2)过点C作CG⊥AD于点F,交AE于点G.若AF=4,求BC的长.
【答案】(1)详见解析;(2)8.
【解析】
试题分析:(1)由已知AB=AC,AD平分∠CAE,易证∠B=∠DAG=∠CAG,根据平行线的判定即可得:AD∥BC;(2)由CG⊥AD,AD平分∠CAE,易得CF=GF,然后由AD∥BC,证得△AGF∽△BGC,再由相似三角形的性质即可求得结论.
试题解析:(1)证明:∵AD平分∠CAE,
∴∠DAG=∠CAG,
∵AB=AC,
∴∠B=∠ACB,
∵∠CAG=∠B+∠ACB,
∴∠B=∠CAG,
∴∠B=∠CAG,
∴AD∥BC;
(2)解:∵CG⊥AD,
∴∠AFC=∠AFG=90°,
在△AFC和△AFG中,
,
∴△AFC≌△AFG(ASA),
∴CF=GF,
∵AD∥BC,
∴△AGF∽△BGC,
∴GF:GC=AF:BC=1:2,
∴BC=2AF=2×4=8.
练习册系列答案
相关题目