题目内容
如图,在平面直角坐标系中有两点A(5,0),B(0,4),则它们之间的距离为( )
A. B. C. D. 3
二元一次方程5a-11b=21 ( )
A. 有且只有一解 B. 有无数解 C. 无解 D. 有且只有两解
下列说法中:①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线;④连结两点的线段叫做两点之间的距离.⑤40°50′=40.5°.⑥互余且相等的两个角都是45°,那么,其中正确的是_____(把你认为正确的序号都填上)
如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )
A. 林老师家距超市1.5千米
B. 林老师在书店停留了30分钟
C. 林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的
D. 林老师从书店到家的平均速度是10千米/时
在图1至图3中,点B是线段AC的中点,点D是CE的中点,△BCF和△CDG都是等边三角形,点M为AE的中点,连接FG.
(1)如图1,若点E在AC的延长线上,点M与点C重合,则△FMG 等边三角形(填“是”或“不是”)
(2)将图1中的CE缩短,得到图2.求证:△FMG为等边三角形;
(3)将图2中的CE绕点E顺时针旋转一个锐角,得到图3.求证:△FMG为等边三角形.
已知直线y=2x+1和y=3x+b的交点在第二象限,则b的取值范围是______.
计算:(x+4)2-(x+2)(x-5)
已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B左侧,点B的坐标为(1,0)、C(0,﹣3).
(1)求抛物线的解析式.
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?如存在,求点P的坐标;若不存在,请说明理由.