题目内容
【题目】已知在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连结EF,M为EF的中点,则CM的最小值为 .
【答案】1.2
【解析】解:如图,连接CP. ∵AC=3,BC=4,AB=5
∴∠ACB=90°,
∵PE⊥AC,PF⊥BC,∠C=90°,
∴四边形CFPE是矩形,
∴EF=CP,
由垂线段最短可得CP⊥AB时,线段EF的值最小,则CM最小,
此时,S△ABC= BCAC= ABCP,
即 ×4×3= ×5CP,
解得CP=2.4.
∴EF=2.4,
∵M为EF中点,
∴CM=1.2
故答案为:1.2.
连接CP,利用勾股定理逆定理可得∠ACB=90°,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,则CM最小,然后根据三角形的面积公式列出方程求解即可.
练习册系列答案
相关题目