题目内容
已知:关于x的二次函数(a>0),点A(n,y1)、B(n+1,y2)、C(n+2,y3)都在这个二次函数的图象上,其中n为正整数.
(1)y1=y2,请说明a必为奇数;
(2)设a=11,求使y1≤y2≤y3成立的所有n的值;
(3)对于给定的正实数a,是否存在n,使△ABC是以AC为底边的等腰三角形?如果存在,求n的值(用含a的代数式表示);如果不存在,请说明理由.
解:(1)∵点A(n,y1)、B(n+1,y2)都在二次函数(a>0)的图象上,
∴。
∵y1=y2,
∴,整理得:a=2n+1。
∵n为正整数,∴a必为奇数。
(2)当a=11时,∵y1<y2<y3,
∴。
化简得:。解得:。
∵n为正整数,∴n=1、2、3、4。
(3)存在。
假设存在,则AB=AC,
如图所示,过点B作BN⊥x轴于点N,过点A作AD⊥BN于点D,CE⊥BN于点E,
∵xA=n,xB=n+1,xC=n+2,∴AD=CE=1。
在Rt△ABD与Rt△CBE中,AB=BC,AD=CE,
∴Rt△ABD≌Rt△CBE(HL)。
∴∠BAD=∠CBE,即BN为顶角的平分线。
由等腰三角形性质可知,点A、C关于BN对称。
∴BN为抛物线的对称轴,点B为抛物线的顶点,
∴。∴。
∴存在n,使△ABC是以AC为底边的等腰三角形,。
解析
练习册系列答案
相关题目