题目内容

如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF
求证:AD平分∠BAC.
分析:由DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF,即可判定Rt△BDE≌Rt△CDF(HL),则可得DE=DF,然后由角平分线的判定定理,即可证得AD平分∠BAC.
解答:证明:∵DE⊥AB,DF⊥AC,
∴∠E=∠DFC=90°,
在Rt△BDE和Rt△CDF中,
BD=CD
BE=CF

∴Rt△BDE≌Rt△CDF(HL),
∴DE=DF,
∴AD平分∠BAC.
点评:此题考察了角平分线的判定与全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网