题目内容

【题目】如图,在正方形ABCD中,AC为对角线,EAB上一点,过点EEF∥AD,与AC,DC分别交于点G,F,HCG的中点,连接DE,EH,DH,FH.下列结论中结论正确的有(

①EG=DF;

②∠AEH+∠ADH=180°;

③△EHF≌△DHC;

,则SEDH=13SCFH .

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】①∵四边形ABCD为正方形,EF∥AD,

∴EF=AD=CD,∠ACD=45°,∠GFC=90°,

∴△CFG为等腰直角三角形,

∴GF=FC,

∵EG=EF﹣GF,DF=CD﹣FC,

∴EG=DF,

正确

②∵△CFG为等腰直角三角形,HCG的中点,

FH=CHGFH=GFC=45°=HCD

△EHF△DHC

∴△EHF≌△DHC(SAS),

∴∠HEF=∠HDC,

∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,

正确

:△EHF≌△DHC,

正确

④∵

∴AE=2BE,

∵△CFG为等腰直角三角形,HCG的中点,

∴FH=GH,∠FHG=90°,

∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,

△EGH△DFH

∴△EGH≌△DFH(SAS),

∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,

∴△EHD为等腰直角三角形,

H点作HM垂直于CDM点,如图所示:

HM=x,则CF=2x,

∴DF=2FC=4x,

DM=5xDH=xCD=6x

SCFH=×HM×CF= x2x=x2 SEDH= ×DH2= ×=13x2

S△EDH=13S△CFH正确

其中结论正确的有:①②③④,4个,

故选D

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网