题目内容

【题目】如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).

(1)求抛物线的解析式;

(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;

(3)点Py轴右侧抛物线上一动点,连接PA,过点PPQPAy轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

【答案】(1)抛物线的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值为;(3)存在点P(1,6).

【解析】(1)根据待定系数法,可得函数解析式;

(2)根据对称性,可得MC=MD,根据解方程组,可得B点坐标,根据两边之差小于第三边,可得B,C,M共线,根据勾股定理,可得答案;

(3)根据等腰直角三角形的判定,可得∠BCE,∠ACO,根据相似三角形的判定与性质,可得关于x的方程,根据解方程,可得x,根据自变量与函数值的对应关系,可得答案.

(1)将A(0,3),C(﹣3,0)代入函数解析式,得

解得

抛物线的解析式是y=x2+x+3;

(2)由抛物线的对称性可知,点D与点C关于对称轴对称,

∴对l上任意一点有MD=MC,

联立方程组

解得(不符合题意,舍),

∴B(﹣4,1),

当点B,C,M共线时,|MB﹣MD|取最大值,即为BC的长,

过点B作BE⊥x轴于点E,

在Rt△BEC中,由勾股定理,得

BC=

|MB﹣MD|取最大值为

(3)存在点P使得以A,P,Q为顶点的三角形与△ABC相似,

在Rt△BEC中,∵BE=CE=1,

∴∠BCE=45°,

在Rt△ACO中,

∵AO=CO=3,

∴∠ACO=45°,

∴∠ACB=180°﹣45°﹣45°=90°,

过点P作PQ⊥y轴于Q点,∠PQA=90°,

设P点坐标为(x,x2+x+3)(x>0)

①当∠PAQ=∠BAC时,△PAQ∽△CAB,

∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,

∴△PGA∽△BCA,

,即

解得x1=1,x2=0(舍去),

∴P点的纵坐标为×12+×1+3=6,

∴P(1,6),

②当∠PAQ=∠ABC时,△PAQ∽△CBA,

∵∠PGA=∠ACB=90°,∠PAQ=∠ABC,

∴△PGA∽△ACB,

=3,

解得x1=﹣(舍去),x2=0(舍去)

∴此时无符合条件的点P,

综上所述,存在点P(1,6).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网