题目内容
【题目】如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).
(1)求抛物线的解析式;
(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;
(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
【答案】(1)抛物线的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值为;(3)存在点P(1,6).
【解析】(1)根据待定系数法,可得函数解析式;
(2)根据对称性,可得MC=MD,根据解方程组,可得B点坐标,根据两边之差小于第三边,可得B,C,M共线,根据勾股定理,可得答案;
(3)根据等腰直角三角形的判定,可得∠BCE,∠ACO,根据相似三角形的判定与性质,可得关于x的方程,根据解方程,可得x,根据自变量与函数值的对应关系,可得答案.
(1)将A(0,3),C(﹣3,0)代入函数解析式,得
,解得,
抛物线的解析式是y=x2+x+3;
(2)由抛物线的对称性可知,点D与点C关于对称轴对称,
∴对l上任意一点有MD=MC,
联立方程组 ,
解得(不符合题意,舍),,
∴B(﹣4,1),
当点B,C,M共线时,|MB﹣MD|取最大值,即为BC的长,
过点B作BE⊥x轴于点E,
,
在Rt△BEC中,由勾股定理,得
BC=,
|MB﹣MD|取最大值为;
(3)存在点P使得以A,P,Q为顶点的三角形与△ABC相似,
在Rt△BEC中,∵BE=CE=1,
∴∠BCE=45°,
在Rt△ACO中,
∵AO=CO=3,
∴∠ACO=45°,
∴∠ACB=180°﹣45°﹣45°=90°,
过点P作PQ⊥y轴于Q点,∠PQA=90°,
设P点坐标为(x,x2+x+3)(x>0)
①当∠PAQ=∠BAC时,△PAQ∽△CAB,
∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,
∴△PGA∽△BCA,
∴,即,
∴,
解得x1=1,x2=0(舍去),
∴P点的纵坐标为×12+×1+3=6,
∴P(1,6),
②当∠PAQ=∠ABC时,△PAQ∽△CBA,
∵∠PGA=∠ACB=90°,∠PAQ=∠ABC,
∴△PGA∽△ACB,
∴,
即=3,
∴,
解得x1=﹣(舍去),x2=0(舍去)
∴此时无符合条件的点P,
综上所述,存在点P(1,6).