题目内容
如图,AB是⊙O直径,∠AOC=140°,则∠D=
设置一种记分的方法:85分以上如88分记为+3分,某个学生在记分表上记为–6分,则这个学生的分数应该是
A. 91分 B. –91分
C. 79分 D. –79分
如图,在平行四边形ABCD中,E、F分别是BC边,CD边的中点,AE、AF分别交BD于点G,H,设△AGH的面积为S1,平行四边形ABCD的面积为S2,则S1:S2的值为( )
A. B. C. D.
(1)问题背景
如图①,BC是⊙O的直径,点A在⊙O上,AB=AC,P为上一动点(不与B,C重合),
求证:PA=PB+PC.
请你根据小明同学的思考过程完成证明过程.
(2)类比迁移
如图②,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,求OC的最小值.
(3)拓展延伸
如图,⊙O的半径为3,点A,B在⊙O上,C为⊙O内一点,AB=AC,AB⊥AC,垂足为A,则OC的最小值为 .
已知关于x的一元二次方程(a+c)x2+2bx+a-c=0,其中a、b、c分别为△ABC三边的长.
(1)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(2)若△ABC是正三角形,试求这个一元二次方程的根.
如图,在平面直角坐标系中,A(0,3)、B(3,0),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为( )
A. 1 B. ﹣1 C. D. 2﹣1
已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是( )
A. 点P在圆内 B. 点P在圆上
C. 点P在圆外 D. 不能确定
下列各项去括号正确的是( )
A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mn
B. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2
C. ab﹣5(﹣a+3)=ab+5a﹣3
D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4
为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母,,,背面朝上,每次活动洗均匀.
甲说:我随机抽取一张,若抽到字母,电影票归我;
乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同的电影票归我.
求甲获得电影票的概率;求乙获得电影票的概率;此游戏对谁有利?