题目内容

【题目】如图所示,在⊙O中, = ,弦AB与弦AC交于点A,弦CD与AB交于点F,连接BC.
(1)求证:AC2=ABAF;
(2)若⊙O的半径长为2cm,∠B=60°,求图中阴影部分面积.

【答案】
(1)证明:∵ =

∴∠ACD=∠ABC,又∠BAC=∠CAF,

∴△ACF∽△ABC,

= ,即AC2=ABAF;


(2)解:解:连接OA,OC,过O作OE⊥AC,垂足为点E,

如图所示:

∵∠ABC=60°,∴∠AOC=120°,

又∵OA=OC,∴∠AOE=∠COE= ×120°=60°,

在Rt△AOE中,OA=2cm,

∴OE=OAcos60°=1cm,

∴AE= = cm,

∴AC=2AE=2 cm,

则S阴影=S扇形OAC﹣SAOC= ×2 ×1=( )cm2


【解析】(1)由 = ,利用等弧所对的圆周角相等得到一对角相等,再由一对公共角相等,利用两对对应角相等的两三角形相似可得出△ACF与△ABC相似,根据相似得比例可得证;(2)连接OA,OC,利用同弧所对的圆心角等于圆周角的2倍,由∠B为60°,求出∠AOC为120°,过O作OE垂直于AC,垂足为点E,由OA=OC,利用三线合一得到OE为角平分线,可得出∠AOE为60°,在Rt△AOE中,由OA及cos60°的值,利用锐角三角函数定义求出OE的长,在Rt△AOE中,利用勾股定理求出AE的长,进而求出AC的长,由扇形AOC的面积﹣△AOC的面积表示出阴影部分的面积,利用扇形的面积公式及三角形的面积公式即可求出阴影部分的面积.
【考点精析】掌握圆心角、弧、弦的关系和圆周角定理是解答本题的根本,需要知道在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网