题目内容
【题目】从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证成立的公式为( )
A.a2﹣b2=(a﹣b)2
B.(a+b)2=a2+2ab+b2
C.(a﹣b)2=a2﹣2ab+b2
D.a2﹣b2=(a+b)(a﹣b)
【答案】D
【解析】解:阴影部分的面积相等,即甲的面积=a2﹣b2 , 乙的面积=(a+b)(a﹣b). 即:a2﹣b2=(a+b)(a﹣b).
所以验证成立的公式为:a2﹣b2=(a+b)(a﹣b).
故选:D.
【考点精析】通过灵活运用平行四边形的性质和等腰梯形的性质,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分;等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等即可以解答此题.
练习册系列答案
相关题目