题目内容

【题目】如图,等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P,且AE=CF.

(1)求证:AF=BE,并求∠FPB的度数;

(2)AE=2,试求AP·AF的值.

【答案】(1)证明见解析;(2)12.

【解析】解:(1)∵△ABC为等边三角形,AB=AC,C=CAB=60°,又AE=CF,∴△ABE≌△CAF(SAS),AF=BE,ABE=CAF.又∵∠APE=BPF=ABP+BAP,∴∠APE=BAP+CAF=60°,∴∠APB=180°-APE=120° (2)∵∠C=APE=60°,PAE=CAF,∴△APE∽△ACF,,即AP·AF=12

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网