题目内容
如图,已知等腰Rt△ABC和等腰Rt△CDE,AC=BC,CD=CE,M、N分别为AE、BD的中点.
(1)判断CM与CN的位置关系和数量关系:
(2)若△CDE绕C旋转任意角度,其它条件不变,则(1)的结论是否仍成立?试证明.
(1)判断CM与CN的位置关系和数量关系:
(2)若△CDE绕C旋转任意角度,其它条件不变,则(1)的结论是否仍成立?试证明.
分析:(1)证△ACE≌△BCD,推出AE=BD,根据直角三角形斜边上中线得出CM=CN,推出∠MAC=∠MCA,∠NDC=∠NCD,即可得出答案;
(2)证△ACE≌△BCD,推出AE=BD,证△ECM≌△NDC,即可得出答案.
(2)证△ACE≌△BCD,推出AE=BD,证△ECM≌△NDC,即可得出答案.
解答:解:(1)CM=CN,MC⊥CN,
理由是:∵∠ACE=∠BCD=90°,
∴在△ACE和△BCD中
∴△ACE≌△BCD,
∴AE=BD,∠AEC=∠BDC,∠EAC=∠DBC,
∵∠ACE=∠BCD=90°,M为AE中点,N为BD中点,
∴CM=AM=ME=
AE,CN=DN=BN=
BD,
∴CM=CN,∠MAC=∠MCA,∠NDC=∠NCD,
∵∠AEC=∠BDC,∠EAC=∠DBC,
∴∠MCA+∠NCD=90°,
∴∠MCN=180°-90°=90°,
即MC⊥CN.
(2)成立,
证明:∵∠ACE=∠BCD=90°,∠ECB=∠ECB,
∴∠ECA=∠DCB,
∴在△ACE和△BCD中
∴△ACE≌△BCD,
∴AE=BD,∠AEC=∠BDC,
∵M、N分别为AE、BD中点,
∴EM=DN,
在△MEC和△NDC中
∴△MEC≌△NDC,
∴CM=CN,∠ECM=∠NCD,
∴∠MCN=∠ECM+∠ECN=∠NCD+∠ECN=∠ECD=90°,
∴CM⊥CN.
理由是:∵∠ACE=∠BCD=90°,
∴在△ACE和△BCD中
|
∴△ACE≌△BCD,
∴AE=BD,∠AEC=∠BDC,∠EAC=∠DBC,
∵∠ACE=∠BCD=90°,M为AE中点,N为BD中点,
∴CM=AM=ME=
1 |
2 |
1 |
2 |
∴CM=CN,∠MAC=∠MCA,∠NDC=∠NCD,
∵∠AEC=∠BDC,∠EAC=∠DBC,
∴∠MCA+∠NCD=90°,
∴∠MCN=180°-90°=90°,
即MC⊥CN.
(2)成立,
证明:∵∠ACE=∠BCD=90°,∠ECB=∠ECB,
∴∠ECA=∠DCB,
∴在△ACE和△BCD中
|
∴△ACE≌△BCD,
∴AE=BD,∠AEC=∠BDC,
∵M、N分别为AE、BD中点,
∴EM=DN,
在△MEC和△NDC中
|
∴△MEC≌△NDC,
∴CM=CN,∠ECM=∠NCD,
∴∠MCN=∠ECM+∠ECN=∠NCD+∠ECN=∠ECD=90°,
∴CM⊥CN.
点评:本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质的应用,主要考查学生的推理能力.
练习册系列答案
相关题目