题目内容
【题目】
(1)数轴上表示5与﹣2两点之间的距离是 ,
(2)数轴上表示x与2的两点之间的距离可以表示为 .
(3)如果|x﹣2|=5,则x= .
(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是 .
(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
【答案】(1)7;(2)|x﹣2|;(3)7或﹣3;(4)﹣3、﹣2、﹣1、0、1;(5)3
【解析】试题分析:(1)根据距离公式即可解答;
(2)利用距离公式求解即可;
(3)利用绝对值求解即可;
(4)利用绝对值及数轴求解即可;
(5)根据数轴及绝对值,即可解答.
解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;
(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;
(3)∵|x﹣2|=5,
∴x﹣2=5或x﹣2=﹣5,
解得:x=7或x=﹣3,
故答案为:7或﹣3;
(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,
∴这样的整数有﹣3、﹣2、﹣1、0、1,
故答案为:﹣3、﹣2、﹣1、0、1;
(5)有最小值是3.
练习册系列答案
相关题目