题目内容

对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.
分析:由x△d=x,得ax+bd+cdx=x,即(a+cd-1)x+bd=0,得
a+cd-1=0
bd=0
①,由1△2=3,得a+2b+2c=3②,2△3=4,得2a+3b+6c=4③,解以上方程组成的方程组即可求得a、b、c、d的值.
解答:解:∵x△d=x,∴ax+bd+cdx=x,
∴(a+cd-1)x+bd=0,
∵有一个不为零的数d使得对任意有理数x△d=x,
则有
a+cd-1=0
bd=0
①,
∵1△2=3,∴a+2b+2c=3②,
∵2△3=4,∴2a+3b+6c=4③,
又∵d≠0,∴b=0,
∴有方程组
a+cd-1=0
a+2c=3
2a+6c=4

解得
a=5
c=-1
d=4

故a的值为5、b的值为0、c的值为-1、d的值为4.
点评:本题是新定义题,考查了定义新运算,解方程组.解题关键是由一个不为零的数d使得对任意有理数x△d=x,得出方程(a+cd-1)x+bd=0,得到方程组
a+cd-1=0
bd=0
,求出b的值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网