题目内容
(2012•大庆)如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.
(1)求∠ACB的大小;
(2)求点A到直线BC的距离.
(1)求∠ACB的大小;
(2)求点A到直线BC的距离.
分析:(1)根据垂直平分线的性质得出AB=BC,进而得出∠A=∠C=30°即可;
(2)根据BC=3,∠ACB=30°,∠BDC=90°,得出CD的长,进而求出AE的长度即可.
(2)根据BC=3,∠ACB=30°,∠BDC=90°,得出CD的长,进而求出AE的长度即可.
解答:解:(1)连接BD,
∵以BC为直径的⊙O交AC于点D,
∴∠BDC=90°,
∵D是AC中点,
∴BD是AC的垂直平分线,
∴AB=BC,
∴∠A=∠C,
∵∠ABC=120°,
∴∠A=∠C=30°,
即∠ACB=30°;
(2)过点A作AE⊥BC于点E,
∵BC=3,∠ACB=30°,∠BDC=90°,
∴cos30°=
=
,
∴CD=
,
∵AD=CD,
∴AC=3
,
∵在Rt△AEC中,∠ACE=30°,
∴AE=
×3
=
.
∵以BC为直径的⊙O交AC于点D,
∴∠BDC=90°,
∵D是AC中点,
∴BD是AC的垂直平分线,
∴AB=BC,
∴∠A=∠C,
∵∠ABC=120°,
∴∠A=∠C=30°,
即∠ACB=30°;
(2)过点A作AE⊥BC于点E,
∵BC=3,∠ACB=30°,∠BDC=90°,
∴cos30°=
CD |
BC |
CD |
3 |
∴CD=
3
| ||
2 |
∵AD=CD,
∴AC=3
3 |
∵在Rt△AEC中,∠ACE=30°,
∴AE=
1 |
2 |
3 |
3
| ||
2 |
点评:此题主要考查了圆周角定理、等腰三角形的判定与性质、含30度角的直角三角形的性质,根据已知得出CD的长度是解题关键.
练习册系列答案
相关题目