题目内容
【题目】如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(﹣2,0)、B(4,0)、C(0,﹣8),与直线y=x﹣4交于B,D两点
(1)求抛物线的解析式并直接写出D点的坐标;
(2)点P为直线BD下方抛物线上的一个动点,试求出△BDP面积的最大值及此时点P的坐标;
(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,直接写出点Q的坐标.
【答案】(1)y=(x+2)(x﹣4),D的坐标是(﹣1,﹣5);(2)P(,﹣);(3)点Q的坐标为(2,﹣2)或(3,﹣1).
【解析】
(1)设抛物线的解析式为y=a(x+2)(x﹣4),将点C的坐标代入可求得a的值,然后将y=x﹣4与抛物线的解析式联立方程组并求解即可;
(2)过点P作PE∥y轴,交直线AB与点E,设P(x,x2﹣2x﹣8),则E(x,x﹣4),则PE═﹣x2+3x+4,然后依据S△BDP=S△DPE+S△BPE,列出△BDP的面积与x的函数关系式,然后依据二次函数的性质求解即可;
(3)设直线y=x﹣4与y轴相交于点K,则K(0,﹣4),设G点坐标为(x,x2﹣2x﹣8),点Q点坐标为(x,x﹣4),先证明△QDG为等腰直角三角形,然后根据∠QDG=90°和∠DGQ=90°两种情况求解即可.
解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴的交点坐标是A(﹣2,0)、B(4,0),
∴设该抛物线解析式为y=a(x+2)(x﹣4),
将点C(0,﹣8)代入函数解析式代入,得a(0+2)(0﹣4)=﹣8,
解得a=1,
∴该抛物线的解析式为:y=(x+2)(x﹣4)或y=x2﹣2x﹣8.
联立方程组:,
解得(舍去)或,
即点D的坐标是(﹣1,﹣5);
(2)如图所示:
过点P作PE∥y轴,交直线AB与点E,设P(x,x2﹣2x﹣8),则E(x,x﹣4).
∴PE=x﹣4﹣(x2﹣2x﹣8)=﹣x2+3x+4.
∴S△BDP=S△DPE+S△BPE=PE(xp﹣xD)+PE(xB﹣xE)=PE(xB﹣xD)=(﹣x2+3x+4)=﹣(x﹣)2+.
∴当x=时,△BDP的面积的最大值为.
∴P(,﹣).
(3)设直线y=x﹣4与y轴相交于点K,则K(0,﹣4),设G点坐标为(x,x2﹣2x﹣8),点Q点坐标为(x,x﹣4).
∵B(4,0),
∴OB=OK=4.
∴∠OKB=∠OBK=45°.
∵QF⊥x轴,
∴∠DQG=45°.
若△QDG为直角三角形,则△QDG是等腰直角三角形.
①当∠QDG=90°时,过点D作DH⊥QG于H,
∴QG=2DH,QG=﹣x2+3x+4,DH=x+1,
∴﹣x2+3x+4=2(x+1),解得:x=﹣1(舍去)或x=2,
∴Q1(2,﹣2).
②当∠DGQ=90°,则DH=QH.
∴﹣x2+3x+4=x+1,解得x=﹣1(舍去)或x=3,
∴Q2(3,﹣1).
综上所述,当△QDG为直角三角形时,点Q的坐标为(2,﹣2)或(3,﹣1).