题目内容
【题目】如图,在□中, 是上一点,且,与的延长线交点.
(1)求证:△∽△;
(2)若△的面积为1,求□ 的面积.
【答案】(1)证明见解析;(2)24
【解析】
(1)利用平行线的性质得到∠ABF=∠E,即可证得结论;
(2)根据平行线的性质证明△ABF∽△DEF,即可求出S△ABF=9 ,再根据AD=BC=4DF,求出S△CBE =16,即可求出答案.
证明:(1)在□ABCD中,∠A=∠C,AB∥CD,
∴∠ABF=∠E,
∴△ABF∽△CEB;
(2)在□ABCD中,AD∥BC,
∴△DEF∽△CEB,
又∵△ABF∽△CEB
∴ △ABF∽△DEF,
∵AF=3DF,△DEF的面积为1,
∴S△ABF=9 ,
∵AD=BC=4DF,
∴S△CBE =16,
∴□ABCD的面积=9+15=24.
【题目】如图,在△ABC中,AB=AC,AD⊥BC于点D,点E是线段AD上的一个动点,连接EC,线段EC绕点E顺时针旋转60°得到线段EF,连接DF、BF,已知AD=5cm,BC=8cm,设AE=xcm,DF=y1cm,BF=y2cm.小王根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.
下面是小王的探究过程,请补充完整:
(1)对照下表中自变量x的值进行取点,画图,测量,分别得到了y1,y2与x的几组对应值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 |
y1/cm | 2.52 | 2.07 | 2.05 | 2.48 |
| 4.00 |
y2/cm | 1.93 | 2.93 | 3.93 | 4.93 | 5.93 | 6.93 |
(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象:
(3)结合函数图象,解决问题:
①当AE的长度约为_______cm时,DF最小;
②当△BDF是以BF为腰的等腰三角形时,AE的长度约为______cm.