题目内容

某饮料厂为了开发新产品,用A、B两种果汁原料各19千克、17.2千克,试制甲、乙两种新型饮料共50千克,下表是试验的相关数据:
饮料
每千克含量
A(单位:千克) 0.5 0.2
B(单位:千克) 0.3 0.4
(1)假设甲种饮料需配制x千克,请你写出满足题意的不等式组,并求出其解集;
(2)设甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,请写出y与x的函数表达式,并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?
分析:(1)因为A、B两种果汁原料各19千克、17.2千克,根据“A果汁原料不超过19千克”“B果汁原料不超过17.2千克”列不等式组,解之即可;
(2)因为甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,这两种饮料的成本总额为y元,所以y=4x+3(50-x),然后利用y随x的变化规律即可求出成本最少的情况.
解答:解:(1)设甲饮料x千克,乙饮料(50-x)千克,根据题意得
0.5x+0.2(50-x)≤19
0.3x+0.4(50-x)≤17.2

解之得28≤x≤30;

(2)y=4x+3(50-x)=x+150
所以当x=28时,y最小.
即甲种饮料配制28千克时,两种饮料的成本总额最少.
点评:利用不等式组即可解决问题.读懂题意,找到相等或不等关系准确的列出式子是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网