题目内容
【题目】已知如图,在矩形ABCD中,点E是AD的中点,连结BE,将△ABE沿着BE翻折得到△FBE,EF交BC于点H,延长BF、DC相交于点G,若DG=16,BC=24,则FH= .
【答案】
【解析】解:连结GE.
∵E是边AD的中点,
∴DE=AE=FE,
又∵四边形ABCD是矩形,
∴∠D=∠A=∠BFE=90°,
∴∠D=∠EFG=90°.
在Rt△EFG与Rt△EDG中,
,
∴Rt△EFG≌Rt△EDG(HL);
∴DG=FG=16,
设DC=x,则CG=16﹣x,BG=x+16
在Rt△BCG中,
BG2=BC2+CG2,
即(x+16)2=(16﹣x)2+242,
解得x=9,
∵AD∥BC,
∴∠AEB=∠CBE,
∵∠AEB=∠FEB,
∴∠CBE=∠FEB,
∴BH=EH,
设BH=EH=y,则FH=12﹣y,
在Rt△BFH中,
BH2=BF2+FH2,
即y2=92+(12﹣y)2,
解得y= ,
∴12﹣y=12﹣ = .
所以答案是: .
【考点精析】解答此题的关键在于理解翻折变换(折叠问题)的相关知识,掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.
【题目】一粒木质中国象棋棋子“車”,它的正面雕刻一个“車”字,它的反面是平的,将棋子从一定高度下抛,落地反弹后可能是“車”字面朝上,也可能是“車”字面朝下.由于棋子的两面不均匀,为了估计“車”字面朝上的概率,某实验小组做了棋子下抛实验,并把实验数据整理如下:
实验次数 | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“車”字面朝上的频数 | 14 | 28 | 38 | 47 | 52 | 66 | 78 | 88 |
相应的频率 | 0.7 | 0.7 | 0.63 | 0.59 | 0.52 | 0.55 | 0.56 | 0.55 |
(1)请将表中数据补充完整,并画出折线统计图中的剩余部分.
(2)如果实验继续进行下去,根据上表数据,这个实验的频率将接近于该事件发生的概率,请估计这个概率是多少?