题目内容

如图(a)过反比例函数的图象在第一象限内的任意两点A、B作x轴的垂线,垂足分别为C、D,连接AO、BO和AB,AC和OB的交点为E,设△AOB与梯形ACDB的面积分别为S与S,


【小题1】试比较S与S的大小;
【小题2】如图(b),已知直线与双曲线交于M、N点,且点M的纵坐标为2.
①求m的值;
②若过原点的另一条直线l交双曲线于P、Q两点(P点在第一象限),若由M、N、P、Q为顶点组成的四边形面积为64,求P点的坐标。

【小题1】设,则
, 同理
                               2分

                            3分


                                     4分
【小题2】①设,代入,得  ∴
                               5分
②由双曲线的对称性知OM="ON  " OP=OQ
∴四边形MPNQ是平行四边形                     6分
过P, M作PH⊥轴于H   MF⊥轴于F
,则 , MF=2
由(1)知
∵SMPNQ="64   " ∴SPOM="16                    " 7



整理:或-18

整理:            11分
∵P在第一象限     ∴
                          12解析:
p;【解析】略
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网