题目内容

【题目】抛物线yx2+bx+3的对称轴为直线x1.若关于x的一元二次方程x2+bx+3t0t为实数)在﹣2x3的范围内有实数根,则t的取值范围是(  )

A.12<t3B.12<t4C.12<t4D.12<t3

【答案】C

【解析】

根据给出的对称轴求出函数解析式为y=-x22x3,将一元二次方程-x2bx3t0的实数根看做是y=-x22x3与函数yt的交点,再由﹣2x3确定y的取值范围即可求解.

解:∵y=-x2bx3的对称轴为直线x=-1

b2

y=-x22x3

∴一元二次方程-x2bx3t0的实数根可以看做是y=-x22x3与函数yt的交点,

∵当x1时,y4;当x3时,y=-12

∴函数y=-x22x3在﹣2x3的范围内-12y≤4

∴-12t≤4

故选:C

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网