题目内容

【题目】如图,在平面直角坐标系中,四边形ABCO为正方形,A点坐标为(0,2),点P为x轴负半轴上一动点,以AP为直角作等腰直角三角形APD,∠APD=90°(点D落在第四象限)

(1)当点P的坐标为(﹣1,0)时,求点D的坐标;
(2)点P在移动的过程中,点D是否在直线y=x﹣2上?请说明理由;
(3)连接OB交AD于点G,求证:AG=DG.

【答案】
(1)

解:如图1中,作DH⊥OC于H.

∵四边形AOCB是正方形,A(0,2),P(﹣1,0),

∴∠AOP=∠PHD=∠APD=90°,OA=2,OP=1,

∵∠APO+∠DPH+90°,∠DPH+∠PDH=90°,

∴∠APO=∠PDH,

在△APO和△PDH中,

∴△APO≌△PDH,

∴PH=OA=2,DH=OP=1,

∴OH=1,

∴D(1,﹣1)


(2)

解:如图2中,作射线CD,设AD交PC于G.

∵∠GCA=∠GDP=45°,∠AGC=∠PGD,

∴△AGC∽△PGD,

=

= ,∵∠AGP=∠CGD,

∴△AGP∽△CGD,

∴∠PAG=∠GCD=45°,

∴∠ACD=90°,

∴CD⊥AC,

∵直线AC的解析式为y=﹣x+2,

∴直线CD的解析式为y=x﹣2,

∴点D在直线CD上


(3)

解:如图3中,连接CG、AC、CD.

∵四边形OABC是正方形,

∴BA=BC,∠GBA=∠GBC,∵BG=BG,

∴△GBA≌△GBC,

∴GA=GC,

∴∠GAC=∠GCA,

∵∠ACD=90°,

∴∠GDC+∠GAC=90°,∠GCB+∠GCA=90°,

∴∠GDC=∠GCD,

∴GC=GD,

∴AG=GD


【解析】(1)如图1中,作DH⊥OC于H.只要证明△APO≌△PDH,推出PH=OA=2,DH=OP=1即可.(2)如图2中,作射线CD,设AD交PC于G.由△AGC∽△PGD,推出 = ,推出 = ,由∠AGP=∠CGD,推出△AGP∽△CGD,推出∠PAG=∠GCD=45°,推出∠ACD=90°,即CD⊥AC,求出直线CD的解析式即可解决问题.(3)如图3中,连接CG、AC、CD.由△GBA≌△GBC,推出GA=GC,只要证明GC=GD即可解决问题.
【考点精析】本题主要考查了相似三角形的应用的相关知识点,需要掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网