题目内容
如图,等腰三角形ABC中,∠BAC=90°,在底边BC上截取BD=AB,过D作DE⊥BC交AC于E,连接AD,则图中等腰三角形的个数是( )
A.1 | B.2 | C.3 | D.4 |
∵三角形ABC是等腰三角形,且∠BAC=90°,
∴∠B=∠C=45°,
∵DE⊥BC,
∴∠EDB=∠EDC=90°
∴∠DEC=∠C=45°,
∴△EDC是等腰三角形,
∵BD=AB,
∴△ABD是等腰三角形,
∴∠BAD=∠BDA,
而∠EAD=90°-∠BAD,∠EDA=90°-∠BDA,
∴∠EAD=∠EDA,
∴△EAD是等腰三角形,
因此图中等腰三角形共4个.
故选D.
∴∠B=∠C=45°,
∵DE⊥BC,
∴∠EDB=∠EDC=90°
∴∠DEC=∠C=45°,
∴△EDC是等腰三角形,
∵BD=AB,
∴△ABD是等腰三角形,
∴∠BAD=∠BDA,
而∠EAD=90°-∠BAD,∠EDA=90°-∠BDA,
∴∠EAD=∠EDA,
∴△EAD是等腰三角形,
因此图中等腰三角形共4个.
故选D.
练习册系列答案
相关题目