题目内容
【题目】在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为θ(0°<θ<90°),连接AC1、BD1,AC1与BD1交于点P.
(1)如图1,若四边形ABCD是正方形.
①求证:△AOC1≌△BOD1.
②请直接写出AC1 与BD1的位置关系.
(2)如图2,若四边形ABCD是菱形,AC=6,BD=8,设AC1=kBD1.判断AC1与BD1的位置关系,说明理由,并求出k的值.
(3)如图3,若四边形ABCD是平行四边形,AC=6,BD=12,连接DD1,设AC1=kBD1.直接写出k的值和AC12+(kDD1)2的值.
【答案】(1)①证明见试题解析;②垂直;(2)AC1⊥BD1, ;(3)25.
【解析】试题分析:(1)①如图1,根据正方形的性质得OC=OA=OD=OB,AC⊥BD,则∠AOB=∠COD=90°,再根据旋转的性质得OC1=OC,OD1=OD,∠COC1=∠DOD1,则OC1=OD1,利用等角的补角相等得∠AOC1=∠BOD1,然后根据“SAS”可证明△AOC1≌△BOD1;
②由∠AOB=90°,则∠OAB+∠ABP+∠OBD1=90°,所以∠OAB+∠ABP+∠OAC1=90°,则∠APB=90°所以AC1⊥BD1;
(2)如图2,根据菱形的性质得OC=OA=AC,OD=OB=BD,AC⊥BD,则∠AOB=∠COD=90°,再根据旋转的性质得OC1=OC,OD1=OD,∠COC1=∠DOD1,则OC1=OA,OD1=OB,利用等角的补角相等得∠AOC1=∠BOD1,加上,根据相似三角形的判定方法得到△AOC1∽△BOD1,得到∠OAC1=∠OBD1,由∠AOB=90°得∠OAB+∠ABP+∠OBD1=90°,则∠OAB+∠ABP+∠OAC1=90°,则∠APB=90°,所以AC1⊥BD1;然后根据相似比得到,所以;
(3)与(2)一样可证明△AOC1∽△BOD1,则,所以;根据旋转的性质得OD1=OD,根据平行四边形的性质得OD=OB,则OD1=OB=OD,于是可判断△BDD1为直角三角形,根据勾股定理得,所以,于是有.
试题解析:(1)①如图1,∵四边形ABCD是正方形,∴OC=OA=OD=OB,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC1=OC,OD1=OD,∠COC1=∠DOD1,∴OC1=OD1,∠AOC1=∠BOD1=90°+∠AOD1,在△AOC1和△BOD1中,∵OA=OB, , ,∴△AOC1≌△BOD1;
②AC1⊥BD1;
(2)AC1⊥BD1.理由如下:如图2,∵四边形ABCD是菱形,∴OC=OA=AC,OD=OB=BD,AC⊥BD,∴∠AOB=∠COD=90°,∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OC1=OC,OD1=OD,∠COC1=∠DOD1,∴OC1=OA,OD1=OB,∠AOC1=∠BOD1,∴,∴△AOC1∽△BOD1,∴∠OAC1=∠OBD1,又∵∠AOB=90°,∴∠OAB+∠ABP+∠OBD1=90°,∴∠OAB+∠ABP+∠OAC1=90°,∴∠APB=90°,∴AC1⊥BD1;∵△AOC1∽△BOD1,∴,∴;
(3)如图3,与(2)一样可证明△AOC1∽△BOD1,∴,∴;∵△COD绕点O按逆时针方向旋转得到△C1OD1,∴OD1=OD,而OD=OB,∴OD1=OB=OD,∴△BDD1为直角三角形,在Rt△BDD1中, ,∴,∴.