题目内容
【题目】如图,某生在旗杆EF与实验楼CD之间的A处,测得∠EAF=60°,然后向左移动12米到B处,测得∠EBF=30°,∠CBD=45°,sin∠CAD=.
(1)求旗杆EF的高;
(2)求旗杆EF与实验楼CD之间的水平距离DF的长.
【答案】(1)旗杆EF的高为6米;(2)旗杆EF与实验楼CD之间的水平距离DF的长为54米.
【解析】(1)易证∠BEA=30°=∠EBF,得出AB=AE=12米,在△AEF中,由三角函数汽车EF即可;
(2)设CD=x米,证出BD=CD=x米,由三角函数得出方程,解方程求出x,再求出AF,即可得出结果.
(1)∵∠EAF=60°,∠EBF=30°,
∴∠BEA=30°=∠EBF,
∴AB=AE=12米,
在△AEF中,EF=AE×sin∠EAF=12×sin60°=6米,
答:旗杆EF的高为6米;
(2)设CD=x米,
∵∠CBD=45°,∠D=90°,
∴BD=CD=x米,
∵sin∠CAD=,
∴tan∠CAD==,
∴,
解得:x=36米,
在△AEF中,∠AEF=60°﹣30°=30°,
∴AF=AE=6米,
∴DF=BD+AB+AF=36+12+6=54(米),
答:旗杆EF与实验楼CD之间的水平距离DF的长为54米.
练习册系列答案
相关题目
【题目】将长为20cm,宽为8cm的长方形白纸,按如图所示的方式粘合起来,粘合部分的宽为3cm.
(1)根据题意,将下面的表格补充完整.
白纸张数x(张) | 1 | 2 | 3 | 4 | 5 | … |
纸条总长度y(cm) | 20 | 54 | 71 | … |
(2)直接写出y与x的关系式.
(3)要使粘合后的长方形总面积为1656cm2,则需用多少张这样的白纸?