题目内容
【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.
(1)求证:△AEH∽△ABC;
(2)求这个正方形的边长与面积.
【答案】(1)详见解析;(2)正方形EFGH的边长为cm,面积为cm2.
【解析】
试题分析:(1)根据EH∥BC即可证明△AEH∽△ABC;(2)如图设AD与EH交于点M,易证四边形EFDM是矩形,设正方形边长为x,由(1)知△AEH∽△ABC,根据相似三角形的性质可得得,代入数据列出方程即可解决问题.
试题解析:(1)证明:∵四边形EFGH是正方形,
∴EH∥BC,
∴∠AEH=∠B,∠AHE=∠C,
∴△AEH∽△ABC.
(2)解:如图设AD与EH交于点M.
∵∠EFD=∠FEM=∠FDM=90°,
∴四边形EFDM是矩形,
∴EF=DM,设正方形EFGH的边长为x,
∵△AEH∽△ABC,
∴,
∴,
∴x=,
∴正方形EFGH的边长为cm,面积为cm2.
练习册系列答案
相关题目