题目内容

【题目】某市为了鼓励居民节约用水,决定实行两级收费制度,若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.

(1)求每吨水的政府补贴优惠价m和市场价n分别是多少元?

(2)小明家5月份交水费70元,则5月份他家用了多少吨水?

【答案】(1)每吨水的政府补贴优惠价m是2元,市场价n是3.5元;(2)5月份小明家用了26吨水.

【解析】

(1)根据小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42,即可得出关于m、n的二元一次方程组,解之即可得出结论;

(2)设5月份小明家用了x吨水,根据应交水费=2×14+3.5×超出14吨的部分,即可得出关于x的一元一次方程,解之即可得出结论.

(1)根据题意得:

解得:

答:每吨水的政府补贴优惠价m2元,市场价n3.5元.

(2)设5月份小明家用了x吨水,

根据题意得:14×2+3.5(x﹣14)=70,

解得:x=26.

答:5月份小明家用了26吨水.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网