题目内容
已知a、b互为相反数,且|a-b|=6,则|b-1|的值为
- A.2
- B.2或3
- C.4
- D.2或4
D
分析:根据互为相反数的两数和为0,又因为|a-b|=6,可求得b的值,代入即可求得结果判定正确选项.
解答:∵a、b互为相反数,
∴a+b=0,
∵|a-b|=6,
∴b=±3,
∴|b-1|=2或4.
故选D.
点评:此题把相反数和绝对值的运算结合求解.先根据相反数求出b的值,再确定绝对值符号中代数式的正负,去绝对值符号.
分析:根据互为相反数的两数和为0,又因为|a-b|=6,可求得b的值,代入即可求得结果判定正确选项.
解答:∵a、b互为相反数,
∴a+b=0,
∵|a-b|=6,
∴b=±3,
∴|b-1|=2或4.
故选D.
点评:此题把相反数和绝对值的运算结合求解.先根据相反数求出b的值,再确定绝对值符号中代数式的正负,去绝对值符号.
练习册系列答案
相关题目