题目内容

【题目】如图(1),E是正方形ABCD的边BC上的一个点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC交BC的延长线于点G.

(1)求证:FG=BE;
(2)连接CF,如图(2),求证:CF平分∠DCG;
(3)当 = 时,求sin∠CFE的值.

【答案】
(1)

证明:∵EP⊥AE,

∴∠AEB+∠GEF=90°,

又∵∠AEB+∠BAE=90°,

∴∠GEF=∠BAE,

又∵FG⊥BC,

∴∠ABE=∠EGF=90°,

在△ABE与△EGF中,

∴△ABE≌△EGF(AAS),

∴FG=BE;


(2)

证明:由(1)知:BC=AB=EG,

∴BC﹣EC=EG﹣EC,

∴BE=CG,

又∵FG=BE,

∴FG=CG,

又∵∠CGF=90°,

∴∠FCG=45°= ∠DCG,

∴CF平分∠DCG


(3)

解:如图,作CH⊥EF于H,

∵∠HEC=∠GEF,∠CHE=∠FGE=90°,

∴△EHC∽△EGF,

=

根据 = ,设BE=3a,则EC=a,EG=4a,FG=CG=3a,

∴EF=5a,CF=3 a,

= ,HC= a,

∴sin∠CFE= =


【解析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等,利用全等三角形的对应边相等即可得证;(2)由(1)得到BC=AB=EG,利用等式的性质得到BE=CG,根据FG=BE,等量代价得到FG=CG,即三角形FCG为等腰直角三角形,得到∠FCG=45°,即可得证;(3)如图,作CH⊥EF于H,则△EHC∽△EGF,利用相似得比例,根据BE与BC的比值,设出BE,EC,以及EG,FG,利用勾股定理表示出EF,CF,进而表示出HC,在直角三角形HC中,利用锐角三角函数定义即可求出sin∠CFE的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网