题目内容
【题目】已知正方形的边长为4,、分别为直线、上两点.
(1)如图1,点在上,点在上,,求证:.
(2)如图2,点为延长线上一点,作交的延长线于,作于,求的长.
(3)如图3,点在的延长线上,,点在上,,直线交于,连接,设的面积为,直接写出与的函数关系式.
【答案】(1)详见解析;(2)4;(3)
【解析】
(1)先证出,得到,则有;
(2)延长交的延长线于,先证出,得到,再由直角三角形的性质得到;
(3)过作交于,交于,先证得得到,再进一步得到及,所以,,所以.
(1)证明:∵四边形是正方形,
∴,,
∴,
∵,
∴,
∴,
∴,
∴.
(2)解:延长交的延长线于,
∵四边形是正方形,
∴,,
∵,
∴,,
∴,
∴,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∵,
∴.
(3).
证明:过作交于,交于,
则,易得
∴,
∴,
由此可证平分,
∴,
∴,
∴,
∴为等腰直角三角形,
∴,
∴,
∴,
∴.
练习册系列答案
相关题目
【题目】某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.
社团名称 | 人数 |
文学社团 | 18 |
科技社团 | a |
书画社团 | 45 |
体育社团 | 72 |
其他 | b |
请解答下列问题:
(1)a= ,b= ;
(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为 ;
(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.