题目内容

已知:k是正整数,直线l1:y=kx+k-1与直线l2:y=(k+1)x+k及x轴围成的三角形的面积为Sk
(1)求证:无论k取何值,直线l1与l2的交点均为定点;
(2)求S1+S2+S3+…+S2008的值.
分析:(1)根据题意列出方程组,解出x,y的值,即可证出无论k取何值,直线l1与l2的交点均为定点.
(2)先求出y=kx+k-1与x轴的交点和y=(k+1)x+k与x轴的交点坐标,再根据三角形面积公式求出Sk,求出S1=
1
2
×(1-
1
2
),S2=
1
2
×(
1
2
-
1
3
),以此类推S2008=
1
2
×(
1
2008
-
1
2009
),相加后得到
1
2
×(1-
1
2009
),求出即可.
解答:(1)证明:
y=kx+k-1
y=(k+1)x+k

解得:
x=-1
y=-1

∴无论k取何值,直线l1与l2的交点均为定点(-1,-1).

(2)解:k≠1时l1与l2图象的示意图.精英家教网
∵y=kx+k-1与x轴的交点为A(
1-k
k
,0),
y=(k+1)x+k与x轴的交点为B(-
k
k+1
,0),
∴SK=S△ABC=
1
2
×AB×
.
yc
  
.

=
1
2
×
.
1-k
k
+
k
k+1
  
.
×1=
1
2k(k+1)

k=1时结论同样成立.
∴S1+S2+S3+…+S2008
=
1
2
[
1
1×2
+
1
2×3
+…
1
2008×2009
]
=
1
2
[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
2008
-
1
2009
)]
=
1
2
×(1-
1
2009

=
1
2
×
2008
2009

=
1004
2009
点评:此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网