题目内容
【题目】如图,在正方形和正方形中,点在上,,将正方形绕点顺时针旋转,得到正方形,此时点在上,连接,则( )
A. B. C. D.
【答案】A
【解析】
作G′I⊥CD于I,G′R⊥BC于R,E′H⊥BC交BC的延长线于H.连接RF′.则四边形RCIG′是正方形.
∵∠DG′F′=∠IGR=90°,
∴∠DG′I=∠RG′F′,
在△G′ID和△G′RF中,
∴△G′ID≌△G′RF,
∴∠G′ID=∠G′RF′=90°,
∴点在线段BC上,
在Rt△E′F′H中,∵E′F′=2,∠E′F′H=30°,
∴E′H=E′F′=1,F′H=,
易证△RG′F′≌△HF′E′,
∴RF′=E′H,RG′=RC=F′H,
∴CH=RF′=E′H,
∴CE′=,
∵RG′=HF′=,
∴CG′=RG′=,
∴CE′+CG′=+.
故选A.
练习册系列答案
相关题目